Copied to
clipboard

G = C42.240D6order 192 = 26·3

60th non-split extension by C42 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.240D6, (C4×S3)⋊9D4, C4⋊Q819S3, D6.8(C2×D4), C4.38(S3×D4), C126(C4○D4), C4⋊C4.217D6, C12.70(C2×D4), C12⋊D439C2, C4⋊D1217C2, (S3×C42)⋊14C2, C41(Q83S3), (C2×Q8).168D6, Dic35D443C2, C6.99(C22×D4), (C2×C6).269C24, D6⋊C4.50C22, Dic3.67(C2×D4), C12.23D426C2, (C2×C12).102C23, (C4×C12).210C22, (C6×Q8).136C22, (C2×D12).172C22, C22.290(S3×C23), C36(C22.26C24), (C22×S3).119C23, (C4×Dic3).258C22, (C2×Dic3).272C23, C2.72(C2×S3×D4), (C3×C4⋊Q8)⋊11C2, C6.120(C2×C4○D4), (C2×Q83S3)⋊12C2, (S3×C2×C4).143C22, C2.27(C2×Q83S3), (C3×C4⋊C4).212C22, (C2×C4).599(C22×S3), SmallGroup(192,1284)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.240D6
C1C3C6C2×C6C22×S3S3×C2×C4S3×C42 — C42.240D6
C3C2×C6 — C42.240D6
C1C22C4⋊Q8

Generators and relations for C42.240D6
 G = < a,b,c,d | a4=b4=d2=1, c6=b2, ab=ba, cac-1=dad=a-1, cbc-1=dbd=b-1, dcd=b2c5 >

Subgroups: 848 in 310 conjugacy classes, 111 normal (19 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C4×S3, C4×S3, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, C22×S3, C2×C42, C4×D4, C4⋊D4, C4.4D4, C41D4, C4⋊Q8, C2×C4○D4, C4×Dic3, C4×Dic3, D6⋊C4, C4×C12, C3×C4⋊C4, S3×C2×C4, S3×C2×C4, C2×D12, Q83S3, C6×Q8, C22.26C24, S3×C42, C4⋊D12, Dic35D4, C12⋊D4, C12.23D4, C3×C4⋊Q8, C2×Q83S3, C42.240D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22×D4, C2×C4○D4, S3×D4, Q83S3, S3×C23, C22.26C24, C2×S3×D4, C2×Q83S3, C42.240D6

Smallest permutation representation of C42.240D6
On 96 points
Generators in S96
(1 28 52 93)(2 94 53 29)(3 30 54 95)(4 96 55 31)(5 32 56 85)(6 86 57 33)(7 34 58 87)(8 88 59 35)(9 36 60 89)(10 90 49 25)(11 26 50 91)(12 92 51 27)(13 75 65 39)(14 40 66 76)(15 77 67 41)(16 42 68 78)(17 79 69 43)(18 44 70 80)(19 81 71 45)(20 46 72 82)(21 83 61 47)(22 48 62 84)(23 73 63 37)(24 38 64 74)
(1 21 7 15)(2 16 8 22)(3 23 9 17)(4 18 10 24)(5 13 11 19)(6 20 12 14)(25 74 31 80)(26 81 32 75)(27 76 33 82)(28 83 34 77)(29 78 35 84)(30 73 36 79)(37 89 43 95)(38 96 44 90)(39 91 45 85)(40 86 46 92)(41 93 47 87)(42 88 48 94)(49 64 55 70)(50 71 56 65)(51 66 57 72)(52 61 58 67)(53 68 59 62)(54 63 60 69)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 9)(2 8)(3 7)(4 6)(10 12)(13 19)(14 18)(15 17)(20 24)(21 23)(25 92)(26 91)(27 90)(28 89)(29 88)(30 87)(31 86)(32 85)(33 96)(34 95)(35 94)(36 93)(37 83)(38 82)(39 81)(40 80)(41 79)(42 78)(43 77)(44 76)(45 75)(46 74)(47 73)(48 84)(49 51)(52 60)(53 59)(54 58)(55 57)(61 63)(64 72)(65 71)(66 70)(67 69)

G:=sub<Sym(96)| (1,28,52,93)(2,94,53,29)(3,30,54,95)(4,96,55,31)(5,32,56,85)(6,86,57,33)(7,34,58,87)(8,88,59,35)(9,36,60,89)(10,90,49,25)(11,26,50,91)(12,92,51,27)(13,75,65,39)(14,40,66,76)(15,77,67,41)(16,42,68,78)(17,79,69,43)(18,44,70,80)(19,81,71,45)(20,46,72,82)(21,83,61,47)(22,48,62,84)(23,73,63,37)(24,38,64,74), (1,21,7,15)(2,16,8,22)(3,23,9,17)(4,18,10,24)(5,13,11,19)(6,20,12,14)(25,74,31,80)(26,81,32,75)(27,76,33,82)(28,83,34,77)(29,78,35,84)(30,73,36,79)(37,89,43,95)(38,96,44,90)(39,91,45,85)(40,86,46,92)(41,93,47,87)(42,88,48,94)(49,64,55,70)(50,71,56,65)(51,66,57,72)(52,61,58,67)(53,68,59,62)(54,63,60,69), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,9)(2,8)(3,7)(4,6)(10,12)(13,19)(14,18)(15,17)(20,24)(21,23)(25,92)(26,91)(27,90)(28,89)(29,88)(30,87)(31,86)(32,85)(33,96)(34,95)(35,94)(36,93)(37,83)(38,82)(39,81)(40,80)(41,79)(42,78)(43,77)(44,76)(45,75)(46,74)(47,73)(48,84)(49,51)(52,60)(53,59)(54,58)(55,57)(61,63)(64,72)(65,71)(66,70)(67,69)>;

G:=Group( (1,28,52,93)(2,94,53,29)(3,30,54,95)(4,96,55,31)(5,32,56,85)(6,86,57,33)(7,34,58,87)(8,88,59,35)(9,36,60,89)(10,90,49,25)(11,26,50,91)(12,92,51,27)(13,75,65,39)(14,40,66,76)(15,77,67,41)(16,42,68,78)(17,79,69,43)(18,44,70,80)(19,81,71,45)(20,46,72,82)(21,83,61,47)(22,48,62,84)(23,73,63,37)(24,38,64,74), (1,21,7,15)(2,16,8,22)(3,23,9,17)(4,18,10,24)(5,13,11,19)(6,20,12,14)(25,74,31,80)(26,81,32,75)(27,76,33,82)(28,83,34,77)(29,78,35,84)(30,73,36,79)(37,89,43,95)(38,96,44,90)(39,91,45,85)(40,86,46,92)(41,93,47,87)(42,88,48,94)(49,64,55,70)(50,71,56,65)(51,66,57,72)(52,61,58,67)(53,68,59,62)(54,63,60,69), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,9)(2,8)(3,7)(4,6)(10,12)(13,19)(14,18)(15,17)(20,24)(21,23)(25,92)(26,91)(27,90)(28,89)(29,88)(30,87)(31,86)(32,85)(33,96)(34,95)(35,94)(36,93)(37,83)(38,82)(39,81)(40,80)(41,79)(42,78)(43,77)(44,76)(45,75)(46,74)(47,73)(48,84)(49,51)(52,60)(53,59)(54,58)(55,57)(61,63)(64,72)(65,71)(66,70)(67,69) );

G=PermutationGroup([[(1,28,52,93),(2,94,53,29),(3,30,54,95),(4,96,55,31),(5,32,56,85),(6,86,57,33),(7,34,58,87),(8,88,59,35),(9,36,60,89),(10,90,49,25),(11,26,50,91),(12,92,51,27),(13,75,65,39),(14,40,66,76),(15,77,67,41),(16,42,68,78),(17,79,69,43),(18,44,70,80),(19,81,71,45),(20,46,72,82),(21,83,61,47),(22,48,62,84),(23,73,63,37),(24,38,64,74)], [(1,21,7,15),(2,16,8,22),(3,23,9,17),(4,18,10,24),(5,13,11,19),(6,20,12,14),(25,74,31,80),(26,81,32,75),(27,76,33,82),(28,83,34,77),(29,78,35,84),(30,73,36,79),(37,89,43,95),(38,96,44,90),(39,91,45,85),(40,86,46,92),(41,93,47,87),(42,88,48,94),(49,64,55,70),(50,71,56,65),(51,66,57,72),(52,61,58,67),(53,68,59,62),(54,63,60,69)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,9),(2,8),(3,7),(4,6),(10,12),(13,19),(14,18),(15,17),(20,24),(21,23),(25,92),(26,91),(27,90),(28,89),(29,88),(30,87),(31,86),(32,85),(33,96),(34,95),(35,94),(36,93),(37,83),(38,82),(39,81),(40,80),(41,79),(42,78),(43,77),(44,76),(45,75),(46,74),(47,73),(48,84),(49,51),(52,60),(53,59),(54,58),(55,57),(61,63),(64,72),(65,71),(66,70),(67,69)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A···4F4G4H4I4J4K4L4M4N4O4P4Q4R6A6B6C12A···12F12G12H12I12J
order122222222234···444444444444466612···1212121212
size1111661212121222···23333444466662224···48888

42 irreducible representations

dim1111111122222244
type+++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D6D6D6C4○D4S3×D4Q83S3
kernelC42.240D6S3×C42C4⋊D12Dic35D4C12⋊D4C12.23D4C3×C4⋊Q8C2×Q83S3C4⋊Q8C4×S3C42C4⋊C4C2×Q8C12C4C4
# reps1114421214142824

Matrix representation of C42.240D6 in GL6(𝔽13)

500000
380000
001000
000100
000010
000001
,
800000
1050000
0012000
0001200
000008
000080
,
110000
11120000
0001200
0011200
000001
0000120
,
12120000
010000
0011200
0001200
000010
0000012

G:=sub<GL(6,GF(13))| [5,3,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[8,10,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,8,0,0,0,0,8,0],[1,11,0,0,0,0,1,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,0,12,0,0,0,0,1,0],[12,0,0,0,0,0,12,1,0,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12] >;

C42.240D6 in GAP, Magma, Sage, TeX

C_4^2._{240}D_6
% in TeX

G:=Group("C4^2.240D6");
// GroupNames label

G:=SmallGroup(192,1284);
// by ID

G=gap.SmallGroup(192,1284);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,100,675,570,185,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^6=b^2,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=b^2*c^5>;
// generators/relations

׿
×
𝔽